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A novel strategy to understand affinity and selectivity for enzyme inhibitors using information
from ligands and target protein 3D structures is described. It was applied to 2-arylsulfonyl-
1,2,3,4-tetrahydro-isoquinoline-3-carboxylates and -hydroxamates as inhibitors of the matrix
metalloproteinases MMP-3 (stromelysin-1) and MMP-8 (human neutrophil collagenase). As
the first step, consistent and predictive 3D-QSAR models were derived using CoMFA, CoMSIA,
and GRID/Golpe approaches, leading to the identification of binding regions where steric,
electronic, or hydrophobic effects are important for affinity. These models were validated using
multiple analyses using two or five randomly chosen cross-validation groups and randomizations
of biological activities. Second, 3D-QSAR models were derived based on the affinity ratio IC50-
(MMP-8)/IC50(MMP-3), allowing the identification of key ligand determinants for selectivity
toward one of both enzymes. In addition to this ligands’ view, the third step encompasses a
chemometrical approach based on principal component analysis (PCA) of multivariate GRID
descriptors to uncover the major differences between both protein binding sites with respect
to their GRID probe interaction pattern. The resulting information, based on the accurate
knowledge of the target protein 3D structures, led to a consistent picture in good agreement
with experimentally observed differences in selectivity toward MMP-8 or MMP-3. The
interpretation of all three classes of statistical models leads to detailed SAR information for
MMP inhibitors, which is in agreement with available data for binding site topologies, ligand
affinities, and selectivities. Thus the combined chemical analyses provide guidelines and
accurate activity predictions for designing novel, selective MMP inhibitors.

1. Introduction

Matrix metalloproteinases (MMPs) are a family of
zinc-containing endopeptidases involved in turnover,
maintenance, and remodeling of tissue. They show
proteolytic activities against most constituents of the
extracellular matrix, like fibronectin, laminin, basement
membrane, and interstitial collagens.1 This activity is
controlled by endogenous tissue inhibitors of metallo-
proteinases (TIMPs) and nonspecific R2-macroglobu-
lins,2 while any disruption causes tissue degradation.
Hence, MMPs are important therapeutic targets for
treatment of cancer,3 arthritis,4 joint destruction,5 and
Alzheimer’s disease,6 leading to a considerable interest
in non-peptidic inhibitors7 for oral administration. In
particular MMP-3 and MMP-8 attack proteoglycan
aggregates (aggrecans) as major cartilage components
at different cleavage sites under pathological conditions
in arthritis.4

Available MMP-38 and MMP-89-12 X-ray structures
earlier led us to a rational design of 2-arylsulfonyl-
1,2,3,4-tetrahydro-isoquinolines with complementary
substituents to the MMP S1′ pocket and hydroxamates
or carboxylates as Zn2+ binding groups. A detailed 3D-
QSAR analysis of 90 analogues as MMP-8 inhibitors is
reported in a parallel publication13 using 3D structures

of the MMP-8 catalytic domain12,14 as template for
alignment.

Here we describe a novel strategy for understanding
affinity and selectivity for MMP-3 and -8 inhibitors,
taking 3D information from both ligands and protein
3D structures into account. Structural information for
protein cavities of MMP-8 and MMP-3 and a consistent
set of inhibitors active over several orders of magnitude
at both targets stimulated this study to investigate the
requirements for selectivity toward one or the other
enzyme by 3D-QSAR techniques. First, predictive 3D-
QSAR models were derived for MMP-3 ligands in
addition to analyses for understanding their MMP-8
affinity.13 Those models serve to identify essential
binding regions, where steric, electronic, or hydrophobic
effects are important to explain ligand affinity. Selectiv-
ity of potential drugs against only a single biological
target, on the other hand, is a major requirement for
the treatment of chronic diseases such as arthritis to
avoid side effects. This caused additional 3D-QSAR
analyses using the ratio IC50(MMP-8)/IC50(MMP-3) as
selectivity measure, revealing key determinants for
selectivity. Finally, this information from the perspec-
tive of ligands was complemented by a study to quan-
titatively describe the differences of the target biomol-
ecules. This third analysis step encompasses a chemo-
metrical approach based on molecular field interaction
descriptors as computed by the program GRID15,16 to
uncover major differences of both protein binding sites
with respect to their GRID probe interaction pattern.17,18
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With accurate 3D structures of both proteins it becomes
possible to quantitatively describe their differences for
designing selective ligands using principal component
analysis (PCA) as a statistical technique, resulting in a
consistent picture in good agreement with experimental
data.

Comparative molecular field analysis (CoMFA)19-21

and related methods22,23 are accepted techniques to
correlate molecular property fields with biological ac-
tivities. As those models provide insight into protein
binding requirements, they are important to potentially
enhance the potency of new analogues. The application
of those models for a quantitative prediction of binding
affinities is possible, if the new candidate molecules fall
within the range of the model.13 After defining an
alignment rule, electrostatic and steric interaction ener-
gies between each ligand and a probe atom on a
predefined grid were computed for CoMFA, while for
CoMSIA fields based on similarity indices between
probe atoms and molecule were utilized.22 Finally the
GRID/Golpe approach is based on the analysis of GRID
molecular interaction fields using particular probes. The
PLS method (partial least squares)24 is used to derive a
linear relationship for highly underdetermined matrices,
while cross-validation25 was used to probe consistency
and predictiveness. The visual interpretation of 3D-
QSAR results using contour maps enhances the under-
standing of electrostatic, hydrophobic, and steric re-
quirements for ligand binding. However, those important
regions are only identified if there is some structural
variance in the underlying data set. Then any new
inhibitor design can be focused to those regions, where
alterations in property fields correlate to ligand affinity
or selectivity.

2. Methods
2.1. Design of MMP-3/8 Inhibitors. The MMP inhibitor

design was based on previous X-ray binding site geometries,
revealing that metalloproteinase specificity mainly resides in
the S1′ pocket,26 close to the catalytic Zn2+ ion. Hydroxamic
and carboxylic acids were selected to coordinate to zinc. They
were connected to a 1,2,3,4-tetrahydro-isoquinoline scaffold,
which is N-substituted by arylsulfonyl substituents proposed
to bind in the S1′ pocket. These sulfonamides are available in
many variations and provide ideal hydrogen bond geometries.
The 2-arylsulfonyl-1,2,3,4-tetrahydro-isoquinoline-3-carboxy-
lates and -hydroxamates as inhibitors of MMP-3 and MMP-8
have been synthesized and biologically tested as described
elsewhere.27,28 Their chemical structures, biological activities,
and selectivities are summarized in Table 1.

2.2. General Computational Procedures. All model
building was done using the program SYBYL29 on SGI
workstations. Conformations of ligands and protein-ligand
complexes were energy minimized using a quasi-Newton-
Raphson or conjugate gradient procedure based on the TRIPOS
6.0 force field30 and Gasteiger-Marsili charges.31 Docking
studies were based on MMP-3 or MMP-8 X-ray structures.
After analyzing key protein-ligand interactions using GRID,15

candidate molecules were manually placed in the active site
and minimized, treating all ligand atoms plus all protein
residues within a sphere of 4 Å as flexible. Other compounds
were built accordingly to obtain the 3D-QSAR alignment rule
based on structure information for both MMPs, as described
in ref 13.

2.3. 3D-QSAR Using CoMFA and CoMSIA. After defining
a superposition rule by minimizing individual protein-ligand
complexes,13 the steric and electrostatic interaction energies
between a probe atom and all compounds are computed at the
surrounding points of a predefined grid, using a volume-

dependent lattice with 1 or 2 Å grid spacing, a positively
charged carbon atom, and a distance-dependent dielectricity
constant for CoMFA. The magnitude of the regions was defined
to extend the ensemble of superimposed conformers by 4.0 Å
along the principal axes of a Cartesian coordinate system. The
maximum field values were truncated to 30 kcal/mol for steric
and (30 kcal/mol for electrostatic interactions. For points
“inside” a molecule (steric energy of 30 kcal/mol), no electro-
static energy was computed. This alignment was also used to
compute steric, electrostatic, and hydrophobic32 CoMSIA simi-
larity index fields. CoMSIA has the advantage that no singu-
larities occur at atomic positions due to a Gaussian-type
distance dependence of the physicochemical properties. Simi-
larity indices33 were computed using a probe with charge +1,
a radius of +1, a hydrophobicity of +1, and an attenuation
factor R of 0.3 for the Gaussian-type distance dependence.

Equal weights for CoMFA or CoMSIA fields were assigned
using the CoMFA_STD block scaling option.34 Cross-validated
analyses were run using the leave-one-out method in SAM-
PLS35 and cross-validation groups with random members
selection, averaged over 100 runs. While CoMFA columns with
a variance smaller than 2.0 were excluded prior to the PLS
analysis (minimum-sigma), no column-filtering was used for
CoMSIA. The overall quality of all PLS analyses was expressed
using the cross-validated r2 defined as

where SD is the variance of biological activities around the
mean values and PRESS refers to the sum of squared differ-
ences between predicted and target property values.

2.4. 3D-QSAR Using GRID/Golpe. To complement CoM-
FA and CoMSIA results, a matrix of interaction energies
between a probe and all compounds is computed at surround-
ing points of a 1 Å grid using the GRID force field15 and a
phenolic OH probe. The same alignment as for CoMFA/
CoMSIA was used. GRID probes are very specifically encoding
spatial information about molecular interactions. The OH
probe especially can donate and accept hydrogen bonds, while
its electronic configuration allows it to interact with the π
system of aromatic rings. Those interactions are of steric,
electrostatic, and hydrophobic nature; they are added together
to give a single value for each point.

Data pretreatment and statistical analyses are done using
the program Golpe.36 A maximum cutoff of 1 kcal/mol rejects
information from repulsive (positive) interaction values,37,38

while attractive interactions decline smoothly with increasing
distance. Columns where all but one ligand have similar values
(2- and 3-level variables23) are excluded from PLS.

D-Optimal39 preselection of variables and fractional factorial
design (FFD) forms the basis for the Golpe algorithm (generat-
ing optimal linear PLS estimations.23). First the most informa-
tive variables are selected by D-optimal design from a PLS
model with optimal number of components. In an iterative
cycle, not more than 50% redundant variables are omitted in
each cycle23 and then a new PLS model is generated with all
remaining columns, until the r2 value decreases (typically after
3-4 cycles). The influence of each variable on the predictive
ability is estimated by multiple cross-validated PLS analyses,
in which variables are included according to a FFD design
matrix23 with the number of columns equal to the number of
variables after D-optimal preselection. Thus the influence of
each variable,40 expressed as SDEP (standard deviation error
of predictions41) can be computed. To identify only those
variables that significantly improve the predictive power, some
random columns are introduced in the design matrix, which
by definition have no influence and thus serve to estimate
confidence levels. While the D-optimal design works fast, the
CPU time for the FFD selection is between 5 and 10 h on a
SGI R10000 workstation.

Alternatively the SRD (smart region definition) method42

for grouping individual descriptors into regions of neighboring
3D variables with similar statistical and chemical information
was applied to enhance chemical relevance of the results. It

r2(cv) ) (SD - PRESS)/SD (1)
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Table 1. 2-Arylsulfonyl-1,2,3,4-tetrahydro-isoquinoline-3-carboxylates and -Hydroxamates as Inhibitors of Matrix Metalloproteinases
MMP-3 and MMP-8a
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Table 1. (Continued)
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Table 1. (Continued)
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works by extracting a subset of highly informative X variables
and partitioning the space around the molecules among them.
These regions have been shown to represent the structural
variability within a series better than individual descriptor
columns and are able to replace the latter in chemometrical
analyses. The identified regions, containing single pieces of
information, are subsequently used for the FFD-based variable
selection, now replacing individual columns by groups of
descriptors. Some alternative procedures to group variables
in X space are described elsewhere.43 The algorithm imple-
mented in Golpe encompasses the following steps: First the
most informative variables are selected as seeds using an

initial PLS model. This selection works in the chemometrical
space of the PLS weights; columns with high importance, i.e.,
high absolute weights, are selected using D-optimal design.
Those seeds are placed in the Cartesian space around the
molecules and used to group the remaining X variables to the
nearest seed using Euclidean distance criterion, producing a
number of Voronoi polyhedra. If neighboring regions now
contain similar information, analyzed using the correlation of
their averaged positive and negative grid energies per mol-
ecule, they are collapsed into larger regions. The criteria for
collapsing are conservative and do not merge slighly different
regions.42a As for the original Golpe procedure, a FFD-based

Table 1. (Continued)

a Ninety MMP inhibitors from ref 13 are listed, while only those with entries in the column selectivity are used for 3D-QSAR analyses.
Selectivity: computed using eq 3; xxx indicates entry not used for QSAR, as MMP-3 value is only approximated. No.: compound ID in
agreement with ref 13.
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variable selection is carried out as the final step, now working
on regions rather than individual variables, which speeds up
CPU time (2-4 h).

2.5. Understanding Protein Selectivity. To understand
selectivity toward one target protein, a recent method17 using
principal component analysis (PCA) of GRID descriptors was
applied. Its objective is to quantitatively characterize ligand-
protein interactions in order to uncover the main differences
of both proteins’ ligand binding sites and to identify the most
selective chemical fragments for new ligands. This potentially
useful approach could also be applied to ligand molecular
fields, leading to the identification of their main structural
differences, while here it was applied to fields derived from
the corresponding receptor structures. First, 3D structures for
each protein were retrieved from the PDB database and
prepared by deletion of water and ligands. Counterions were
added for charged functional groups using GRID routines
MINIM and FILMAP.16 For MMP-8 the PDB file 1jao9 was
superimposed with 1sln8 for MMP-3 using an iterative fitting
procedure on 157 residues using Pro86-Gly242 for MMP-8 and
Pro90-Tyr223 plus Ser225-Gly247 for MMP-3. CR pairs were
rejected for subsequent iterations if they showed an rms
deviation higher than 3 times the standard deviation, leading
to an rmsd of 0.41 Å for 117 CR atoms. The ligand binding
sites within a box with edges of 16, 22, and 22 Å in x, y, z
dimensions were considered. The binding site characterization
was done using the GRID force field15,16 with functional groups
listed in Table 2 on a 1 Å grid and a static protein treatment
(directive MOVE).

A maximum cutoff value of 0 kcal/mol was used to reject
information from repulsive GRID interaction points in the X
matrix. When using only favorable interaction energies, the
information solely related to steric repulsion is removed and
the analysis is focused on favorable protein-ligand interac-
tions. All data were centered by subtracting the column
average from each column and no further scaling was applied,
as the physicochemical origin of the data is similar. Two
probes, Mg2+ and Ca2+, were rejected from the initial 40 probes
in Table 2, as they were outliers in an initial PCA. Thus the
data matrix finally consists of 8993 x variables × 38 probes ×
2 proteins. Each row corresponds to a specific probe-target
interaction, while columns are variables that describe interac-
tions at regular grid.

A PCA44 was carried out using Golpe23 to contract the large
number of collinear and multicollinear variables with redun-
dant information to a few orthogonal principal properties. In
PCA, the original data matrix X with interaction energies xik

for i probe-target interactions and k grid points is decomposed
to means (xk), scores (tia), loadings (pak), and residuals (eik), with
a denoting the number of model dimensions:

The data matrix X is approximated by the product of two
smaller matrixes, scores and loadings. The score matrix pak

gives a simplified picture of the objects (i.e., probes interacting
with proteins), represented by a few uncorrelated new vari-
ables. Those scores can be plotted to visualize differences in
protein-interaction pattern. The first new principal component
(PC) describes the maximum variance among all possible
directions, the second one the next largest variation among
all directions orthogonal to the first one, etc. The resulting
eigenvalues represent the overall variance after extraction of
each successive new factor. If most of the variation of the
original data can be described by the first few factors, a much
simpler data structure exists. Here the NIPALS algorithm was
used, which calculates every component in a stepwise manner
and is faster than diagonalization of the covariance matrix if
only the first eigenvalues are desired. The principal component
axes were not additionally rotated.

3. Results and Discussion

3.1. CoMFA and CoMSIA Models for MMP-3
Affinity. All 3D-QSAR models for MMP-3 affinity
reveal a high degree of consistency. Using a 2 Å grid
spacing, a CoMFA model with an r2(cv) value of 0.563
for six relevant PLS components and a conventional r2

of 0.944 was obtained (Table 3). The alignment for this
and other models is obtained by docking all compounds
into the MMP-3 binding site (Figure 1). The steric field
explains 53.5% of the variance, showing a balance to
the electrostatic field. With a reduced 1 Å grid spacing,
a five-component PLS model results with an r2(cv) of
0.432 and r2 of 0.917 (Table 3). The fitted versus
experimental biological activities45 for this model are
given in the Supporting Information.

Both models were subjected to several validation
studies to assess their predictive power. First, the effect
of the alignment relative to the grid position was
investigated by consistently translating all compounds
in increments of 0.5 Å in all three dimensions of the
Cartesian space, while keeping the alignment intact. A
mean r2(cv) value of 0.42 with a range from 0.29 to 0.59
is obtained after several translations, revealing a sig-
nificant dependence from the molecular orientation for
CoMFA. Second, the biological activities were random-
ized and analyzed using PLS.46 The mean r2(cv) for 100
randomizations is -0.19 (SD 0.14) for a 2 Å grid, while
for the 1 Å grid, a mean r2(cv) of -0.08 (SD 0.06) was
obtained, demonstrating the significance of the original

Table 2. Thirty-Eight Used GRID Probes for Multivariate Binding Site Characterization and Principal Component Analysis
(Abbreviations and Chemical Meaning)

N3+ sp3 amine NH3 cation N2+ sp3 amine NH2 cation
N2: sp3 NH2 with lone pair N2) sp2 amine NH2 cation
N2 neutral flat NH2, e.g., amide N1+ sp3 amine NH cation
N1: sp3 NH with lone pair N1) sp2 amine NH cation
N1 neutral flat NH, e.g., amide NH) sp2 NH with lone pair
N1# sp NH with one hydrogen N: sp3 N with lone pair
N:) sp2 N with lone pair N:# sp N with lone pair
N-: anionic tetrazole N NM3 trimethyl-ammonium cation
O sp2 carbonyl oxygen O:: sp2 carboxy oxygen atom
O- sp2 phenolate oxygen O) O of SO4 or sulfonamide
OH phenol or carboxy OH O1 alkyl hydroxy OH group
OC2 ether or furan oxygen OES sp3 ester oxygen atom
ON oxygen of nitro group OS O of sulfone/sulfoxide
OH2 water H neutral hydrogen atom
C3 methyl CH3 group C1) sp2 CH aromatic or vinyl
PO4 PO4 phosphate dianion PO4H PO4H phosphate anion
S1 neutral SH group F organic fluorine atom
CL organic chlorine atom BR organic bromine atom
I organic iodine atom DRY hydrophobic probe

xik ) xk + ∑
a)1

A

tiapak + eik (2)
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PLS models. Furthermore, PLS analyses with two
randomly chosen cross-validation groups were repeated
100 times, leading to averaged r2(cv) values of 0.362 (SD
0.11) for a 2 Å grid and 0.327 (SD 0.08) for the 1 Å grid.
Histograms with the distribution of r2(cv) over 100 runs
for 2 cross-validation groups or randomized activities
are given in the Supporting Information.

Similar results were obtained for CoMSIA: Using a
2 Å grid, an r2(cv) value of 0.413 for eight components
and a conventional r2 of 0.957 was obtained (Table 3),
while a 1 Å grid led to an eight-component model with
an r2(cv) of 0.382 and a conventional r2 of 0.954. The
steric fields in both models explain 17% of the variance,
while 45% for electrostatic fields and 38% for the
hydrophobic fields are observed, suggesting that the
CoMFA steric field contribution is a balance between
pure steric plus hydrophobic effects. Similar validations
were run for the CoMSIA 2 Å model. A mean r2(cv) value
of -0.19 (SD 0.10) is observed for 100 analyses with
randomized activities, while two cross-validation groups

lead to a mean r2(cv) of 0.240 (SD 0.10), counting for a
significant and predictive model.

For MMP-8, CoMFA and CoMSIA analyses produced
models of similar significance, and additional valida-
tions count for predictive models, e.g. a CoMFA model
with r2(cv) of 0.569 (five component) and r2 of 0.905.
Details are given elsewhere,13 while statistical results
are summarized in Table 3.

3.2. Comparison to MMP-3 and MMP-8 Binding
Site Topologies. The steric and electrostatic std*coeff
CoMFA fields from the final PLS models with 1 Å grid
spacing for MMP-8 and MMP-3 are displayed as contour
maps in Figure 2 in combination with the inhibitor 8
containing a hydroxamate and a biphenyl ether-sul-
fonamide attached to the 1,2,3,4-tetrahydroisoquinoline
scaffold (IC50 ) 20 nM for MMP-3, 2 nM for MMP-8).
The interpretation of CoMSIA contour maps led to
similar conclusions for both targets (see ref 13 for a
discussion on MMP-8). Dark or green contours in
Figures 2 and 3 on the left correspond to sterically
favorable regions for biological affinity obtained from
CoMFA (>85% contribution), while gray or yellow
contours indicate regions affecting the biological activity
in a negative way: a bulky substituent here reduces
activity (<15% contribution).

Although the PLS results are derived from ligand
information, the obtained contour maps are consistent
with steric, electrostatic, and hydrophobic binding site
requirements, as can be seen from inspection of Figure
3. Here the steric and electrostatic CoMFA contours
were mapped onto the protein/8 complex, showing that
these maps correspond to steric and electrostatic re-
quirements in both ligand binding sites, providing
additional insights into key protein-ligand interactions.

Three main regions can be consistently identified for
MMP-3 and -8, where steric bulk increases activity. A
green contour at the distal biphenyl ether ring indicates
a hydrophobic cleft within the S1′ pocket formed by the
side chains of Tyr219, Leu193, and Val194, which is
filled with water in some experimental MMP-inhibitor
structures. Another green region highlights steric re-
quirements in the ortho position of this ring close to the
“Met-turn”, a âI-turn formed by Ala213(i)-Leu214-

Table 3. Summary of 14 3D-QSAR Models for MMP-3/MMP-8 Affinity and Selectivitya

r2(cv) SD comp. r2 validation

MMP-3
CoMFA (2 A) 0.563 0.629 6 0.944 LOO, 2 CV, randomize, grid var
CoMFA (1 A) 0.432 0.717 5 0.917 LOO, 2 CV, randomize
CoMSIA (2 A) 0.413 0.738 8 0.957 LOO, 2 CV, randomize
CoMSIA (1 A) 0.382 0.757 8 0.954 LOO
Golpe_FFD (1 A) 0.795 0.413 5 0.967 LOO, LTO, 5RG
Golpe_SRD (1 A) 0.789 0.419 5 0.964 LOO, LTO, 5RG

MMP-8
CoMFA (2 A) 0.569 0.685 5 0.905 LOO, 2 CV, randomize, grid var
CoMFA (1 A) 0.516 0.726 5 0.911 LOO
CoMSIA (2 A) 0.478 0.763 7 0.924 LOO, 2 CV, randomize
CoMSIA (1 A) 0.447 0.786 7 0.924 LOO
Golpe_FFD (1 A) 0.729 0.512 4 0.934 LOO, LTO, 5RG
Golpe_SRD (1 A) 0.719 0.521 4 0.936 LOO, LTO, 5RG

selectivity
Golpe_FFD (1 A) 0.532 0.280 3 0.831 LOO, LTO, 5RG
Golpe_SRD (1 A) 0.510 0.286 3 0.821 LOO, LTO, 5RG

a r2(cv): cross-validated r2 using leave-one-out; SD: standard deviation of error in leave-one-out; comp.: optimal number of PLS
components, i.e., latent variables; r2: non-cross-validated regression coefficient; validation 2 CV: cross-validation using two randomly
chosen cross-validation groups 100 times; randomize: randomization of biological activities 100 times; grid var: shifting the alignment
within fixed grid box; LOO: leave-one-out; LTO: leave-two-out; 5RG: cross-validation using five random groups 20 times. The used grid
spacing is given in parentheses.

Figure 1. Superposition of 2-arylsulfonyl-1,2,3,4-tetrahydro-
isoquinoline-3-carboxylates and -hydroxamates as MMP-3/-8
inhibitors for 3D-QSAR studies.
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Met215-Tyr216(i + 4). A third region at the zinc binding
group indicates steric requirements at the metal coor-
dination center, suggesting that the optimal distance
of two zinc coordinating oxygens is better realized in
hydroxamates than in carboxylates.

Steric regions connected to decreasing biological
activity are also consistently identified for MMP-3 and
MMP-8. A gray or yellow contour in Figures 2 and 3 at
the first biphenyl ether ring indicates unfavorable steric
interactions at the narrow entrance into the S1′ pocket,
formed by Pro217, His207, His197, and Val194. Other
yellow regions indicate sterical restrictions at the edge
and bottom of the S1′ pocket, pointing to the Asn218-
Tyr219 peptide backbone and Arg222 (MMP-8 number-
ing) located at the bottom of this pocket. Finally a region
at the upper side of the aromatic isoquinoline ring
indicates the preferred stereochemistry at carbon C3 for
both enzymes, as the inversion of this chiral center
orients this ring toward this yellow contour.

The electrostatic std*coeff contour maps are also
similar for CoMFA (Figures 2 and 3, right panels) and
CoMSIA. Dark or blue contours (>85% contribution)
point to those regions, where positive charge is favorable
to enhance biological affinity, while gray or red contours
(<15% contribution) indicate regions where negative
charge is favored. Blue CoMFA contours close to the
hydroxamate NH indicates favorable hydrogen bond

interactions to the Ala161 backbone carbonyl oxygen
and the Glu198 side chain functionality in agreement
with X-ray crystallographic studies,47 while red contours
at the catalytic zinc indicate the optimal geometry for
zinc complexation. Another blue contour next to the
meta position of the first biphenyl ether ring corre-
sponds to a favorable interaction to Val194-CdO and
Leu193-CdO. In fact, the chemical interpretation of
CoMFA and CoMSIA contour maps for both targets led
to similar conclusions for MMP-3 and MMP-8 inhibition,
raising the question of how to explain observed experi-
mental selectivities in this set of tetrahydroisoquino-
lines.

3.3. GRID/Golpe Models for MMP-3 and MMP-8
Affinity. To identify additional binding requirements
for MMP-3 and MMP-8, 3D-QSAR analyses were per-
formed using an approach based on computed interac-
tion energies from each individual ligand to a phenolic
OH probe positioned on regular points of a predefined
1 Å grid. The same alignment as for CoMFA and
CoMSIA was used for both analyses. Interaction ener-
gies were computed using the GRID force field15,16 and
analyzed with PLS and variable selection in Golpe.23

The effect of individual variables on predictivity based
on a FFD design matrix points exactly to relevant
variables (Golpe_FFD, Table 3). The PLS model for
MMP-3 after FFD-based variable selection contains

Figure 2. Steric (A, C) and electrostatic (B, D) std*coeff CoMFA derived contour maps from PLS models with 1 Å grid spacing
for MMP-3 (A, B) and MMP-8 (C, D). For reference, the inhibitor 8 is shown (IC50 ) 20 nM MMP-3, 2 nM MMP-8). For steric
contour maps, dark contours indicate sterically favorable regions for biological affinity (>85% contribution), while gray contours
show where a bulky substituent reduces activity (<15% contribution). In the electrostatic std*coeff contour maps, dark contours
(>85% contribution) show positive charge favorable for affinity, while gray contours (<15% contribution) indicate regions where
negative charge is favored or positive disfavored.
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1316 from 25 740 grid points, leading to an r2(cv) of
0.795 with five PLS components and an r2 of 0.967
(Table 3). Validation using the leave-two-out approach
(r2(cv) ) 0.792) and five cross-validation groups (r2(cv)
mean ) 0.749) demonstrate the significance of this

model. For MMP-8, a PLS model with an r2(cv) of 0.729
and an r2 of 0.934 for four components and 1382
variables after FFD-based variable selection was ob-
tained (see Table 3). Here only 85 inhibitors with
available MMP-3 data were included, in contrast to ref

Figure 3. The model from Figure 2 with inhibitor 8 and protein topology (MMP-3 in A, B and MMP-8 in C, D). Only selected
amino acid residues are shown. The numbering scheme is taken from MMP-8, while differences in MMP-3 are indicated at the
second position. MMP-3 mutations and insertions (A, B) compared to MMP-8 (C, D) are highlighted in yellow, while similar
residues are colored in purple. Green contours indicate sterically favorable regions, while yellow contours show where a bulky
substituent reduces activity. In the electrostatic std*coeff contour maps, blue contours indicate positive charge favorable for affinity,
while yellow contours indicate regions where negative charge is favored or positive disfavored.
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13. This predictivity of this model is revealed by leave-
two-out cross-validation (r2(cv) ) 0.728) and five cross-
validation group analyses (r2(cv) mean ) 0.703).

In addition the “smart region definition” (SRD) method
for grouping variables into regions of neighboring
descriptors with similar statistical and chemical infor-
mation was applied to enhance the chemical relevance
of results. Here the final PLS model after SRD contains
1049 variables, and an r2(cv) of 0.789 (five components)
and an r2 of 0.964 are obtained (Table 3). This model
was validated by using the leave-two-out approach
(r2(cv) ) 0.787) and five cross-validation groups (r2(cv)
mean ) 0.743). The corresponding MMP-8-based four-
component PLS model contains 1282 selected variables,
and an r2(cv) value of 0.719 and an r2 of 0.936 are
obtained (Table 3). Its significance is revealed by results
from leave-two-out cross-validation (r2(cv) ) 0.713) and
five cross-validation groups (r2(cv) mean ) 0.669). The
FFD- or SRD-based models for MMP-3 and MMP-8 led
to very similar results, providing consistent insights into
favorable interactions by a complementary approach to
CoMFA and CoMSIA.

The coefficient maps for the MMP-3 and MMP-8
models from SRD or FFD variable selection are com-
pared in Figure 4 using the inhibitor 8 docked into
MMP-3 or MMP-8. Similar residues in MMP-3 and
MMP-8 are colored in purple in Figure 4E, while
different amino acids are yellow. The numbering in
Figure 6E,F follows the MMP-8 convention, while
mutations in MMP-3 are indicated. The negative and
positive PLS coefficient fields are shown in cyan (-0.003
in 6A and -0.007 in 6B-D) and orange (+0.003 in 6A
and +0.007 in 6B-D), respectively. For chemical inter-
pretation one must remember that substituents being
able to favorably interact with an OH probe led to
negative GRID energies. Hence, cyan contours indicate
attractive interactions, which will increase biological
affinity, while repulsive, unfavorable interactions will
lower activity. In contrast, orange contours indicate that
repulsive interactions (space filling) increase affinity,
while attractive interactions decrease activity.

In general, the chemical interpretation for the PLS
models for MMP-3 or MMP-8 led to similar results,
regardless of the method for variable selection (SRD in
Figure 4A,C; FFD in Figure 4B,D). Corresponding
regions with cyan contours can be identified, indicating
favorable attractive interactions between selected ligands
and polar binding site regions. The first cyan region
indicates favorable interactions involving the catalytic
zinc and the residues Ala165 and Glu202 in the binding
site to the hydroxamate and carboxylate functional
group, highlighting the optimal zinc binding geometry.
The polar entrance into the S1′ pocket close to the
sulfonamide is highlighted by a cyan contour, while
favorable ligand interactions to the backbone carbonyl
oxygens of Tyr220 and Pro221 pointing into S1′ are also
indicated by cyan contours.

Unfavorable interactions are indicated by orange
contour regions in Figure 4. One region is located close
to the small hydrophobic cleft Leu197, Val198, and
Tyr223 in the S1′ pocket, which agrees with CoMFA and
CoMSIA results, revealing that hydrophobic, sterically
demanding substituents filling the S1′ pocket increase
affinity. Another orange contour region in all models in

Figure 4 indicates repulsive interactions to the catalytic
zinc ion, which in combination with the neighboring
cyan colored region provides detailed information about
zinc binding. Thus the chemical interpretation of the
GRID/Golpe derived models for both targets is in good
agreement to CoMFA and CoMSIA, while their com-
parison does not allow the extraction of key regions
responsible for selective interaction to only one of both
MMPs.

3.4. 3D-QSAR Model for Ligand Selectivity. Al-
though all previous 3D-QSAR models are designed to
explain MMP-8 and MMP-3 affinities, no information
was obtained to understand selectivities, as from the
resulting contour maps in Figures 2, 3, and 4 no
different interactions pattern to both MMPs are obvious.
To this end, two complementary approaches were used.
First a 3D-QSAR model was derived using

as a quantitative selectivity measure for the dependent
variable in PLS.48 Again GRID interaction energies to
the phenolic OH probe on a 1 Å grid were used as
descriptors. The PLS model after FFD-based variable
selection with 1226 from 25 740 variables resulted in
an r2(cv) of 0.532 for three components and an r2 of 0.831
(Table 3). This model was validated using leave-two-
out (r2(cv) ) 0.529) and five cross-validation groups
(r2(cv) mean ) 0.479). The corresponding model ob-
tained after SRD-based grouping of variables containing
1127 variables produces an r2(cv) of 0.510 (three com-
ponents) and an r2 of 0.821 (Table 3). The leave-two-
out validation (r2(cv) ) 0.507) and repeated models with
five cross-validation groups (r2(cv) mean ) 0.461) also
support a statistically significant model. However,
individual models for MMP-3 or MMP-8 affinity show
higher r2(cv) values, suggesting that models of higher
consistency are obtained using a single biological ob-
servable rather than introducing a dependent variable
as function of different IC50 values with associated
experimental errors.49

Both analyses led to models of similar chemical
interpretability, thus only contour maps from the SRD
model are shown in Figure 5. Cyan contours now
highlight regions where favorable interactions to the OH
probe increase selectivity toward MMP-8 or decrease it
for MMP-3, while a particular substituent oriented
toward an orange region increases selectivity toward
MMP-8 by repulsive or unfavorable hydrophobic OH
interactions.

Four cyan selectivity regions in the S1′ pocket are
seen in Figure 5B in agreement with binding site
topologies. To further guide chemical interpretation, the
selective MMP-8 inhibitor 84 (IC50 ) 1000 nM MMP-3,
10 nM MMP-8) is shown in Figure 5, carrying a Zn
binding carboxylate and a biphenyl ether P1′ moiety
with a para-cyano substituent at the distal ring. Its
observed selectivity can be rationalized by a cyan
contour at the bottom of S1′ close to the cyano group,
showing that polar interactions here are favorable for
MMP-8 selectivity. This contour agrees with selective
interactions to the Arg222 side chain at the bottom of
S1′ in MMP-8. Furthermore, a cyano group close to a

y ) log(1/IC50(MMP-8) × 100 000) -
log(1/IC50(MMP-3) × 100 000) (3)
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Figure 4. PLS coefficient maps for GRID/Golpe models with a phenolic OH probe and a 1 Å grid spacing for MMP-3 (A, B) and
MMP-8 (C, D). The models on the left (A, C) were obtained by smart region definition (SRD)-based variable selection, while the
models on the right (B, D) resulted from FFD-based variable selection. For reference, the inhibitor 8 is displayed. Cyan contours
at -0.003 for A and -0.007 for B-D indicate regions where attractive OH interactions increase affinity, while repulsive interactions
lower activity. Orange contours at +0.003 for A and +0.007 for B-D highlight repulsive interactions increasing biological affinity
(e.g., space filling), while attractive interactions decrease activity. For comparison, the models A and B are shown in combination
with the corresponding protein structure in E for MMP-3 and F for MMP-8. See Figure 3 for details.
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guanidine is found four times when searching 8059 PDB
complexes using the program ReliBase.50 While aceto-
nitril is found two times (1scb; subtilisin Carlsberg51),
in 2cgr (IGG2B (κ) FAB fragment52) and 1hpo (HIV-1
protease mutant/U103265 complex53), typical ligands
reveal this interaction.

In MMP-8, the Arg222 guanidino group is interacting
via hydrogen bonds with Pro211-CdO, Gly212-CdO (via
solvent) and Ala213-CdO. In many MMP-8 X-ray
structures, the S1′ bottom is filled with solvent mol-
ecules hydrogen-bonded to Arg222 and backbone amides
at the wall of this hydrophobic pocket. Arg222 is
replaced by the less hydrophilic Leu226 in MMP-3,
while the bottom of S1′ is not occluded. This hydrophobic
environment agrees with 3D-QSAR results.

A second cyan colored region indicating selectivity
differences is pointing toward the polar residue Asn218,
which is changed to the hydrophobic Leu222 in MMP-
3. Here selective interactions to MMP-8 can be designed
by adequate heteroatom substitution within or attached
to the distal aromatic substituent. The third cyan region
is pointing toward the polar entrance into S1′, which is
formed by the residues from Gly158 to Ala161 plus
Tyr219. The main differences to MMP-3 are replace-
ments of Ile159 by Val163 and Gly158 by the polar
Asn162.

Several polar groups at the S1′ wall anchor substrates
and inhibitors by hydrogen bonds, like the side chains
of Asn218, Glu198, the backbone amides of the wall-
forming strands, and the catalytic Zn2+. The replace-
ment of Asn218 versus Leu222 causes minor conforma-
tional shifts in its neighborhood, which are reflected by
3D-QSAR contours next to the sulfonamide and the first
aromatic ring of selective inhibitors. Thus the chemical
interpretation of 3D-QSAR results based on GRID/Golpe

contour maps is in good agreement with structural
differences uncovered by visual inspection of both
protein cavities.

3.5. Multivariate Characterization of Protein
Selectivity. In addition to this view from the ligands’
perspective, a final study was based on a chemometrical
approach using a PCA of multivariate GRID descriptors
to uncover differences of binding sites with respect to
their GRID probe interaction pattern. The knowledge
of structures from X-ray crystallography provide ex-
tremely useful information to focus on ligand-protein
interactions and selectivity regions. The results from
this approach17,18 led to a consistent picture in agree-
ment with all other investigations.

After superimposing the 3D structures for MMP-8
(PDB code: 1jap) and MMP-3 (1sln), their binding sites
were characterized by GRID interaction energies to
several functional groups (Table 2). This data matrix
was analyzed using a PCA on only favorable interac-
tions, resulting in a significant two-component model
for 38 GRID probes. The first principal component (PC)
explains 33.5% of the variance, while the second adds
27.8%.

In the 2D score plot in Figure 6A, each point indicates
a single object from the original X matrix, referring to
interactions of a GRID probe with one of both targets.
The clustering of points into two separate groups
demonstrates that the first principal component PC1
(x-axis) discriminates between targets (MMP-3 negative
PC1 scores, mp3; MMP-8 positive PC1 scores, mp8). The
PC1 scores are related to the ability of GRID probes to
selectively interact with only one target. The greater
the horizontal spread of a probe for both targets is, the
more relevant this probe is for discrimination. For
selective compounds, one should insert groups with

Figure 5. PLS coefficient maps for the GRID/Golpe selectivity model with an OH probe on a 1 Å grid without (A) and with
MMP-8 binding site (B), derived using SRD-based variable selection. The inhibitor 84 (IC50 ) 1000 nM MMP-3, 10 nM MMP-8)
is shown. Cyan contours at -0.0025 indicate regions where favorable OH interactions increase selectivity for MMP-8, while orange
contours at +0.0035 highlight regions where increased MMP-8 selectivity results from repulsive or unfavorable OH interactions.
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higher PC1 score differences. In contrast, PC2 indicates
nonselective ligand-protein interactions, ranking all 38
GRID probes by their ability to interact with common
binding site regions. Higher PC2 scores indicate stron-
ger unselective interactions to both MMPs.

The PCA loadings are displayed in Figure 6B, where
main regions are indicated by different boxes. Each
point represents the contribution to the PCs of each grid

position with computed probe-protein interactions.
Variables with high absolute PC1 loadings indicate
binding regions with different interaction behavior, i.e.,
regions, where a group interacts loosely with one
enzyme and tightly with the other. Several selectivity
regions in the binding site can be identified: On the left
the MMP-8 selectivity region with high PC1 and PC2
scores points to strong, selective interactions. The

Figure 6. The 2D score (A) and loadings plot (B) of the first principal component (PC1) versus the second (PC2) for the PCA on
grid interaction energies between 38 probes and both targets MMP-3 and MMP-8. The points in the score plot represent individual
objects of the X matrix, i.e., interactions of a probe with a target. Points on the left represent MMP-3 interactions, while points
on the right indicate MMP-8 interactions. The points in the loadings plot represent individual variables (grid points) of the X
matrix. Indicated regions are discussed in the text.
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MMP-8 selective variables circled in Figure 6B are
located in the S1′ pocket, when plotting the loadings in
3D (Figure 7A). Similar variables in Figure 6B on the
right-hand side indicate MMP-3 selectivity regions. In
contrast, low values for PC1 and PC2 indicate regions
exhibiting weak, unselective interactions, while high
PC2 but low PC1 values refer to strong, unselective
interactions, shown at the top of Figure 6B.

It should be noted that a PCA is a purely mathemati-
cal technique to simplify complex matrices of many
thousand data points and to obtain an informative
picture of the underlying data structure. This method
does not force any discrimination between unspecific
affinity and selectivity regions that is not clearly present
in the underlying matrix.

In Figure 7A, 3D contour maps with PC1 loadings are
indicating those selectivity regions where appropriate
substituents are favorable to interact with only one of
both MMPs. Selectivity regions for MMP-8 are indicated
by cyan contours, while substitutions in yellow regions
by appropriate substituents (probes) would improve
selectivity toward MMP-3. The major protein differences
were discussed above, like the replacement of Arg222
by Leu226 in MMP-3, the nonoccluded S1′ pocket, and
the substitution of Ile159, Gly158 by Val, Asn in MMP-3
and Asn218, Ala220 of the upper rim of S1′ by Leu, His
in MMP-3. The identified contour regions from this
analysis are in agreement with S1′ differences, demon-
strating its chemical significance to explain selective
protein-ligand interactions.

For interpretation, the MMP-8 selective inhibitor 84
is shown. As suggested by the selectivity 3D-QSAR
analysis, the para-cyano or other polar groups here are
key determinants for selectivity, as it directly points to
a cyan MMP-8 selectivity region at the bottom of S1′

close to Arg222. This preference is reflected by the
position of the N:# probe atom (sp nitrogen with lone
pair) in Figure 6A. Thus a discrimination between
MMP-8 and MMP-3 is possible by placement of func-
tional groups in those regions according to the ranking
of probes in Figure 6A. The other cyan contour in the
S1′ pocket is in agreement with heteroatom substitu-
tions at the distal biphenyl ether ring, resulting in
MMP-8 selective compounds with distal heterocycles or
appropriate substituents. A selective example by insert-
ing two aromatic nitrogen atoms into the distal aromatic
ring is inhibitor 35. A third MMP-8 selective example
is only used for MMP-8 QSAR studies,13 as its MMP-3
activity is too low (26, IC50 ) ∼90000 nM MMP-3, 200
nM MMP-8). This molecule with a phenolic OH and a
carbonyl oxygen linking two phenyl rings in S1′ high-
lights the additional MMP-8 S1′ selectivity region. There
are other selective compounds, where characteristic
functional groups are located toward corresponding
protein selectivity regions, e.g., 63 (IC50 ) 100 nM
MMP-3, 1 nM MMP-8) with a para-dimethylamino
group directed toward the cyan contour at the S1′
bottom. Inspection of Figure 7A explains the experi-
mental finding that most compounds are MMP-8 selec-
tive, while there is only a limited possibility in the S1′
pocket to obtain MMP-3 selectivity. Another selectivity
region is located in the S2 pocket, which is not probed
by this set of inhibitors while it is occupied by an
isobutyl side chain in the PDB file 1jap.9 The majority
of less selective inhibitors is characterized by S1′-
directed side chains, interacting at common MMP-3 and
-8 affinity regions. There is only a small number of
slightly selective compounds for MMP-3 (e.g., 45, IC50

) 400 nM MMP-3, 800 nM MMP-8) with a bulky group

Figure 7. The 3D contour map of the PC1 (A) and PC2 (B) loadings for the PCA model using multivariate GRID descriptors.
PC1 highlights selectivity regions (cyan: MMP-8, yellow: MMP-3); PC2 indicates unselective affinity regions for both targets.
For reference, the inhibitor 84 is displayed. See Figure 3 for details.
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too large for the occluded MMP-8 pocket, while the
MMP-3 pocket tolerates more steric bulk.

In Figure 7B the regions for unselective strong ligand
recognition, corresponding to positive PC2 loadings in
Figure 6B, are shown as contour maps, revealing that
almost the entire S1′ pocket plus the region on the left
of the MMP-8 residue Ala161 are important for unspe-
cific MMP affinity. This area corresponds to the binding
region for the peptide Pro-Leu-Gly-NHOH, which oc-
cupies the unprimed subsites P1-P2-P3. All PC1 and
PC2 maps correspond to 3D-QSAR results, and a
consistent picture explaining affinity and selectivity of
MMP-3 and MMP-8 inhibitors is obtained, which is in
good agreement with experimental selectivity differ-
ences.

4. Conclusions

Understanding protein-ligand interactions is es-
sential for designing novel synthetic candidates, while
those interactions are difficult to describe. Here some
useful insights for MMP inhibitors are presented by
combining different computational approaches. A novel
strategy to understand affinity and selectivity for met-
alloproteinase inhibitors using information from ligands
plus protein 3D structures is successfully applied to a
series of 2-arylsulfonyl-1,2,3,4-tetrahydro-isoquinoline-
3-carboxylates and -hydroxamates as MMP-3 and -8
inhibitors. Although the combined interpretation of 3D-
QSAR results for both targets highlights protein-ligand
interactions, only limited information for selectivity
were extracted. Hence, 3D-QSAR models were derived
using the affinity ratio MMP-8/MMP-3, which led to key
ligand determinants for selectivity. A consensus predic-
tion using several QSAR models for all biological ob-
servables should lead to a reliable scoring to guide novel
inhibitor design.

To complement this ligands’ view on affinity and
selectivity, a chemometrical approach using a principal
component analysis uncovers differences of metallopro-
teinase binding sites with respect to their GRID probe
interaction. A consistent picture in good agreement with
experimental selectivity differences and 3D-QSAR mod-
els for selectivity is obtained, while all statistical models
can be jointly interpreted and correspond to available
data for binding site topologies, ligand affinities, and
selectivities. The application of field-based 3D-QSAR
techniques and other chemometrical approaches to
extract knowledge from the protein binding site en-
hances our understanding of some aspects in protein-
ligand interaction. From those models, potent and
selective MMP inhibitors may emerge for several thera-
peutic approaches.
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